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Abstract—Automatic target detection is important for real
time navigation applications of 3D forward looking sonar (3D-
FLS) systems. A 3D-FLS sensor generates a large volumetric
point cloud of data that updates on the order of seconds, so
that manually interpreting the data is not feasible for a vessel
operator. FarSounder has developed an algorithm for detecting
two classes of targets (seafloor and in-water-targets) based on
traditional image and signal processing techniques. In this work,
two modified versions of CNN architectures previously developed
for volumetric data (3D U-Net and 3D V-Net) are evaluated
for their ability to replace the current detection algorithm. The
current detection algorithm was used to generate the set of
training data and validation data for training and evaluation.
Additional models were developed based on the 3D U-Net and
V-Net models to operate on 2D cross sections of the data
volumetric data as input instead of the volumetric input. All
of the volumetric models achieved higher validation and training
accuracy than the 2D versions, and the 3D U-Net replicated
the traditional algorithm most closely. Finally, an automated
procedure for improving training data using NOAA bathymetry
data is described.

I. INTRODUCTION

Automatic target recognition is very important for a number
of sonar based systems, particularly for 3D forward looking
sonar (3D-FLS) system when used for navigation in real-time.
The navigational 3D-FLS system used in this study insonifies
the volume ahead of the vessel (up to 1000m forward at 60
deg to port and starboard, or 500m forward at 90 deg to port
and starboard) and collects the back-scatter levels using a bow
mounted transducer array. The resulting data is a 3D point
cloud of target strength values in front of the vessel, refreshing
after each ping (1.6 seconds).

Figure 1 depicts a visualization of the resulting array
processed data in 3D, with color mapped to target strength in
dB. Clearly, inspecting the raw sonar data for the location of
the seafloor and any navigational hazards would require a great
deal of operator training and attention. Given that the entire
dataset refreshes every 1.6 seconds, manually monitoring this
data and recognizing targets and making navigation decisions

is a demanding task. At FarSounder Inc., this motivated the
implementation and development of automatic target recog-
nition algorithms to increase ease of use and comprehen-
sion of navigational 3D-FLS data. Note that automatic target
recognition algorithms are even more essential for autonomous
applications of navigational 3D-FLS.

A variety of target detection or target recognition methods
have been developed for sonar applications. Some traditional
methods are based on determining peaks in sonar returns
using either fixed or adaptive thresholding. Other methods
apply image processing techniques such as edge detection
in combination with thresholding in order to algorithmically
detect targets. Wang et al. (2017) [1] presented a recent
review of target detection and feature extraction methods in
underwater sonar in general. Greethalakshmi et al. (2011) [2]
presented a review of target detection in side-scan sonar im-
ages using image processing techniques, specific to detecting
mine like objects. Recently, especially in the last few years,
convolutional neural networks (CNNs) have been applied
to a number of image segmentation and object detection
problems with very promising results. Naturally, CNN based
frameworks have also been applied to sonar data as well.
For example, Dzieciuch et al. (2016) [3] developed a simple
CNN framework for detection of mine-like objects in sonar
images that obtained an accuracy of 99% in the conditions of
their study. Further Kim et al. (2016) [4] presented a CNN
based algorithm for detection of a small ROV in traditional
forward looking sonar images. Valdenegro-Toro (2017) [5]
investigated the accuracy of three CNN models for object
detection in traditional forward looking sonar images as a
function of object and training set size, and investigated how
well transfer learning using developed CNN models performed
on forward looking sonar data. Finally, Livne et al. (2018)
[6] presented a review of the current challenges associated
with using CNNs for object detection in traditional forward
looking sonar data. They concluded that due to the typically
lower signal-to-noise ratio in forward looking sonar data, and



Fig. 1. 3D projection of target strength values from a single ping using a 3D-FLS. Only one single vertical, horizontal, and radial plane are displayed for
clarity.

the lack of publicly available labelled data, much more work
is needed to be done and that deeper networks (compared
to the model they investigated) should be considered. Thus
far, all of the forward looking sonar images considered in the
literature (to the best of the authors knowledge) has considered
short range, high resolution, 2D imaging sonars. The sensor
considered in this work is a FarSounder 3D-FLS, and as
introduced above (see Figure 1) it is capable of generating
a 3D point cloud of ‘target strength’ or backscatter strength
values. While 3D-FLS data has not been yet been considered,
a number of researchers have applied CNN based frameworks
to volumetric point clouds of data, particularly for applications
related to autonomous driving and medical imaging. Maturana
and Scherer (2015) [7] developed VoxNet, and applied it to
publically available benchmarks using 3D LIDAR, RGBD, and
CAD data. Zhou and Tuzel (2017) presented VoxelNet [8], a
framework for 3D object detection, and successfully applied it
to LIDAR data from the KITTI dataset. V-Net was developed
by Milletari et al. (2016) [9] and applied successfully to 3D
magnetic resonance images (MRI), while a 3D version of U-
Net [10] was developed by Cicek et al. (2016) [11] applied to
3D confocal microscope data. Many other contributions exist
and this review is not intended to be exhaustive, however,
a CNN framework for object detection in 3D-FLS has not
yet been presented in the literature. Therefore, the main
objectives of this work are to (1) evaluate the performance of
a few distinct CNN based models for target detection on 3D-
FLS data compared to detection methods based on traditional
image processing, and (2) investigate ways to generate and
improve the training dataset to limit any requirement of manual
labelling.

II. PROCEDURE

A. Processing Overview

The 3D point cloud of back-scatter results obtained using
a 3D-FLS (as depicted in Figure 1) needs to processed and
presented in a way that is easy to understand for end users.
FarSounder’s current processing chain uses traditional signal
and image processing techniques to make ‘detections’ in the
data and obtain information about the location of the seafloor
and any navigational hazards ahead of the vessel. A high level
outline of the processing chain is presented in Figure 2.

Due to the recent success of CNNs for image segmentation
and object detection operations, it is likely that a CNN based
model could entirely replace our current ‘detection’ algorithm
(eg. red dashed box in Figure 2) and, with the proper training
data, perform significantly better than the current algorithm.
The network architecture is important to the efficacy of any
CNN based model for a given application, and many novel
architectures have been published recently for processing some
other types of 3D data. In searching for the architecture
that works best for 3D-FLS, a baseline dataset, for which
each architecture can be compared is extremely useful. Given
that nature of 3D-FLS data (a dense cloud of back-scatter
information with comparatively low SNR) as depicted in
Figure 1, the suitability of a CNN model for this problem
must first be investigated. That is, is it even possible to
replace the current target detection algorithms with a CNN
based model? The first step in this work is to determine
whether a CNN based model can address this problem. This is
accomplished by developing a ‘training baseline’ from a few
recently developed CNN models, and comparing the results
to the standard algorithm. Next the accuracy of each CNN
model is compared using the same training and validation data.
Finally, the top performing architecture is trained on improved



Fig. 2. Current target detection algorithm flowchart.

training data, and the results are are compared to the standard
algorithm and presented.

B. Model Input

The current input to the model is a 3-dimensional array
of back-scatter strengths, and while the exact dimensions
are proprietary, the total number of voxels is on the order
of millions (see Figure 1). The task of both the traditional
detection algorithm and the CNN-based model is to generate
a class label for each point in this input volume. The current
possible classes are either (1) background, (2) seafloor, or (3)
in-water target. This produces an output with the same shape
as the input in the first three dimensions but an additional
dimension of length three appended to the end. The three
element vector in the last dimension represents the probability
of a voxel being background, seafloor or in-water target.

C. Training Baseline

Given that a procedure (Figure 2) for turning sensor level
data (Figure 1) into a human readable map of detections
(seafloor and ‘in-water target’) is already in place, it was
straightforward to develop a baseline for the evaluation of
any potential network architectures, loss function, optimizer,
and/or hyper-parameter combinations. The existing processing
chain was applied to limited set of data to automatically
generate a labeled training set. Training a network on this
data set is essentially an attempt to directly replace the current
processing with the CNN model, which should be a great first
indicator of the fitness of a given model for this application.

D. Architectures Considered

The data obtained from the 3D-FLS is inherently a 3D
point cloud of back-scatter strengths ahead of the vessel,
so an intuitive approach is apply a CNN model to the data
that implements 3D convolutional layers. Two architectures
presented in the literature for processing volumetric data are

the 3D-UNet [11] and V-Net [9] architectures. Figures 3 and
4 illustrate the original published architecture of 3D-UNet and
V-Net, respectively.

In this work, slightly modified versions of both the 3D U-
net and V-Net architectures are were tested. Due to the size
of the input data generated by the 3D-FLS sensor, the number
of filters used in the volumetric convolutions was reduced in
both the U-net and V-Net models until the model could be
trained successfully (with running out of memory resources)
on an 8 GB Nvidia GTX 1070 GPU. Of course, better results
might be observed running on a system with more available
GPU memory. However, considering that the end goal of this
investigation is to deploy the network for real-time target
detection on computers currently specified with Nvidia GTX
1050 (with 4 GB of GPU memory). Based on our observations,
the production machines using the model for predictions use
about half of of the memory used in training, most likely due to
storage of gradients for back propagation, so for the purposes
of this work, though it may produce a more robust model, is
not beneficial.

In addition, 2D versions of these models were created by
switching the 3D convolutions with 2D convolutions and tested
by inputting 2D slices of the 3D input data into the model.
For the same size GPU memory footprint, the 2D version of
the model allow a greater number of filters to be considered at
each layer, while neglecting information about the adjoining
slices through the data.

E. Manually Editing Training Data

Manually labelling all of the seafloor and in-water targets
would not be efficient, as indicated above. However, the
current detection algorithm produces a number of detections
that are not necessarily useful for the user to see. A major
example of this is the wake of recently passed vessel, or
directional noise from another passing vessel. To avoid training
the CNN model to continue to detect these targets, as the tra-



Fig. 3. 3D U-net architecture presented by Cicek et al. (2016) (reproduced). The same architecture was used in this work. The number of features layers was
tuned as indicated in the text to reduce the GPU memory footprint.

Fig. 4. 3D V-Net architecture presented by Milletari et al. (2016) (reproduced). The same architecture was used in this work. The number of features layers
was tuned as indicated in the text to reduce the GPU memory footprint.

ditional algorithm does, a tool was developed to clean the data
manually. So that in the future, each ping can be inspected,
and any detection caused by vessel wakes or interference from
engine noise will be removed from the training data.

F. Automated Training Data Improvement

One approach to improving the training data was to use
survey data collected by NOAA to supplement detections of
the seafloor generated by the traditional algorithm. The NOAA
survey data is collected using a higher resolution sensor
(MBES) and cleaned in post processing by a hydrographer, so
it is likely a reasonably good estimate of the ground truth depth
in the area, assuming that the area was surveyed somewhat
recently. Surveys within the training data were downloaded
and added to a database containing the location and depth for
the survey points. For each ping the database was queried for
points within the field of view of the sensor. The three subplots
in Figure 5 illustrate the depth as a function of position in
an area with interesting bathymetry. They represent the field
of view (FOV) of a single ping of the 3D-FLS, thus this fit
procedure is applied over many pings.

A Radial Basis Function (RBF) interpolator was fit using
this set of depths at given latitude and longitude within the
sensors field of view. For each point in the 3-D point cloud,

the latitude and longitude was used to compute the depth, as
predicted using the RBF interpolator. If the calculated depth
fell within an arbitrarily chosen tolerance of the depth of the
point in the 3D cloud, the point was labeled as a bottom. The
new array of labels were saved and used to train the CNN.

III. RESULTS

The results of our investigation into whether a CNN based
model is suitable for this problem, and which architecture and
parameters to use, are described in this section. It is important
to note that given that there are large number of possible
network architectures and combinations of hyperparameters, it
is unlikely that the optimum network for this problem has been
found here. However, the results presented below illustrate
the performance of the models that have been adapted to this
problem so far. The results should not be interpreted to suggest
that any particular model investigated is generally better than
the rest.

A. Baseline Training data

A dataset of 1450 3D-FLS pings was recorded for use as
the baseline training set. The pings included in the dataset
come from a variety of different boat trips on different days
in different locations. The dataset was further split into 1187
pings for training and 263 pings for validation. Each model



Fig. 5. NOAA survey data contained within the field of view of a single ping.

tested was implemented in python using Keras and Tensorflow.
They were trained on a computer with a Nvidia GTX 1070
GPU with 8GB of dedicated memory. A batch size of 1 was
used for all of the 3D versions of the CNN models, as it
was required to fit the data onto the GPU. Each epoch took
approximately 5 hours to complete, and the models were run
for 10 epochs each. The 10 epoch limit was chosen empirically
so that the loss and accuracy were not changing much from one
epoch to the next. The 2D versions of the models were run on a
batch size of 10 for roughly 10 epochs or until the loss became
stationary, and the runtime was 1.5 hours per epoch on the
same system. For both the 2D versions of UNet and VNet, one
version of the model with all volumetric convolutions switched
with 2D convolutions, but with the number of features kept
constant. A second 2D version of each model was created
with a greater number of trainable parameters by increasing
the number of filters used in the convolutional layers.

The Adam [12] optimizer was used to train all models, and
categorical cross entropy was chosen as the loss in all cases.
Due to an imbalance in the number of background points in the
3D-FLS data compared to the number of points representing
a detection, two different weighting methods were tested.
The first was a sample weighting approach which used the
frequency of a class within a ping to weight each sample, and
in the second the weight was calculated using the frequency
of a given class over the entire dataset. The later method
produced models with higher training and validation accuracy.
The results of running all of the models considered in this
work are tabulated in Table I, where CW: Class weighted loss
function, SW: sample weighted loss function, the categorical
cross entropy loss function was used for all cases, and the
Adam optimization algorithm with default Keras parameters
was used to train the parameters. The “*” represents a model
with increased features in the convolutional layers to increase
the number of trainable parameters.

In regards to the quantitative metrics of accuracy over the
training and validation, the 3D Vnet model with class weighted
loss performed the best. However, in both the training and
validation data, despite the class weighting, this model con-

TABLE I
COMPARISON OF TRAINING RESULTS USING BASELINE TRAINING

DATASET

Model Epochs Parameters Training Acc. Valid. Acc.

2D UNet* 10 385943 0.8399 0.8532

2D UNet (CW 10 41697 0.7989 0.8361

3D UNet (CW) 10 123957 0.9480 0.9459

3D UNet (SW) 10 123957 0.9456 0.8932

2D VNet* (CW) 10 216581 0.8216 0.8504

2D VNet (CW) 10 88647 0.7710 0.9111

3D VNet (CW) 10 255507 0.9507 0.9507

3D VNet (SW) 10 255507 0.9366 0.9421

verged to predict very little of the seafloor class (the most
underrepresented class). In comparison, the 3D U-net model
achieved similar accuracy, but performed qualitatively better,
in the sense that it predicts classes with frequencies closer
to those in the training data. For this reason, the 3D U-
net model using the class weighting approach was chosen
as best candidate for further development out of the models
investigated.

An example of the qualitative performance of the model is
given in Figures 6 and 7. The volumetric input data is shown
on the left, with the traditional results and CNN based results
in the top and bottom right respectively. The ping used to
generate Figures 6 and 7 was not included in the training data
set for the CNN models. In both Figures 6 and 7, the CNN
models are able to detect the in-water target features that are
detected using the traditional processing corresponding to the
edges of a pier. However, there are are clearly some additional
detections that do not exist in the training data. The CNN
model used to generate Figure 7 is the same 3D U-Net model
with weighted loss, however it was trained using the AdaDelta
[13] optimizer, and without normalizing the input per ping.
This model seems to have less ’false positive’ detections.
The seafloor detection generated by both CNN models in 6
and 7 agrees well with the standard algorithm at short range.
However both CNN models detect additional deep seafloor



Fig. 6. Comparison of the qualitative output of the 3D U-Net model and traditional detection model for a given input.

Fig. 7. Comparison of the qualitative output of the 3D U-Net model and traditional detection model for a given input. This model was trained using the
AdaDelta optimizer for 5 epochs instead of Adam, and the input was not normalized per ping.



targets at longer range. The long range detections are not
present in all pings, and the seafloor agrees well with the
traditional algorithm in some of the other pings investigated.

Based on the results generated by the CNN models investi-
gated for this work, it seems that the traditional detection algo-
rithm could certainly be replaced by a CNN model, though the
CNN models need to be further refined to reduce superfluous
detections, especially of the seafloor. Further, while the CNN
model reproduced all of the features detected by the traditional
detection algorithm, it of course replicated all of the examples
of detections made by the traditional model which are not
desirable (eg. engine noise from passing vessel, wakes, etc.).

A subset of the training data was improved using the
automated process previously described and used to continue
the training of the 3D U-Net model. However, using the
current best model with the updated training resulted in poor
performance and appeared to be underfitting the data. Perhaps
fitting the added complexity of the longer range seafloor labels
created using the NOAA survey data will require a model
with a greater number of trainable parameters or the additional
layers. Further, additional features could be added to the input
of the CNN model in addition to only including the backscatter
strength. For example, including the cartesian position of each
element in the point cloud along with the backscatter strength
could allow the network to handle the differences between the
Cartesian and spherical coordinate representation of the data.

IV. CONCLUSIONS

In this work, a handful of CNN models were developed
based on published architectures for volumetric data. A base-
line set of training data was automatically generated using
a detection algorithm based on traditional image and signal
processing techniques, and used to train and evaluate each
model. The results of training on the baseline data suggest
that the current detection algorithm could be replaced by a
CNN model. However, application of the CNN results in some
’false positives’ that are not detected in the current processing,
especially in the detection of the seafloor. In addition, if only
trained on the baseline, the CNN model will of course never
surpass the performance of the current detection algorithm.
In order to improve the training data for the model, NOAA
bathymetry data was used to improve and extend the seafloor
detection in a subset of the data in the baseline training set.
The added range and number seafloor points in the training
data was not easily fit by the current CNN model, suggesting
that additional input features, parameters or layers may be
needed. Finally, a tool for manually editing the label data
was developed for further improvement of the training data.
The next steps in the project include generating results after
training on improved data, introducing more input features to
the model, and increasing the number of layers and trainable
parameters to improve performance when using the training
data that has been extended using NOAA bathymetric data.
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